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Using nonequilibrium molecular dynamics simulations on simple Lennard-Jones binary mixtures, we have
studied the behavior of planar fluid-fluid interfaces undergoing shear flow. When the miscibility is low enough,
a slip together with a partial depletion have been noticed at the interface between the two fluid phases. The slip
length can reach a value equal to some molecular diameters and the corresponding interfacial viscosity can be
two times smaller than the value in the bulk. It is shown how the omission of this slip may lead to flow-rate
misevaluation when dealing with a multiphase flow in a nanoporous medium even for non polymer fluids. In
addition, using the simulation results, a simple relation between interfacial tension and interfacial viscosity is
proposed for the monoatomic systems studied in this work. Finally, it is shown that the interfacial viscosity
cannot be fully accounted for by estimating the local viscosity deduced from the local thermodynamic prop-
erties of the interface.
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I. INTRODUCTION

With the increased interest in micro/nanofluidics and mi-
croelectromechanical devices �1,2�, a great effort has been
dedicated to the improvement of the understanding of the
heat and mass transfers at the atomic scale along and across
interfaces �1–8�. In particular, many works have been dedi-
cated to the estimation of the slip of simple Newtonian fluids
at the fluid-solid interface in the nondilute regime �1,7,8�.
However, it is not always easy to analyze experimental re-
sults in Newtonian liquids because of the various parameters
that may affect the slip �8�. A way to study well controlled
systems is to employ molecular dynamics �MD� simulation
on given fluid models in contact with an idealized solid sur-
face of a chosen geometry. In particular, thanks to molecular
dynamics simulation on model liquid confined in nanopores,
it has been shown that a non negligible slip can occur at a
fluid-solid interface �non wetting and perfectly flat at the
atomic scale� even for a monoatomic fluid �9,10�. Rather
surprisingly, there is far less studies of fluid-fluid interfaces
under shear and most of them deal with polymer systems
�11–17�.

From a macroscopic point of view, it is still generally
assumed that, at a fluid-fluid interface there is both equality
of the tangential velocities and equality of the shear stress
�18�, except in polymer science where a partial/apparent slip
is sometimes accounted for �13–15�. In fact, there are some
experimental evidences of such polymer-polymer apparent
interfacial slip �15� which is usually consistent with theories
�11,13� and which has been noticed as well by MD simula-
tions �12,14�. Generally, this apparent slip is related to the
peculiar behavior �conformation, entanglement� of the chains
at the interface which induces an interfacial viscosity lower
than the one in the bulk regions �13,15�. However, Padilla et
al. �12� and latter Koplik and Banavar �14� have shown that,
even in monoatomic fluids, a partial slip can appear at a

liquid-liquid interface between two immiscible fluids using
MD simulations. Nevertheless, they do not provide a full
explanation of this slip in systems, which are not composed
of chainlike molecules.

So, to improve the analysis of the momentum transfer
across simple fluid-fluid �composed of monoatomic species�
interfaces and to study and quantify a possible slip, we have
performed nonequilibrium molecular dynamics �NEMD�
simulations of planar fluid-fluid interfaces undergoing a
shear flow. The systems simulated are composed of two spe-
cies possessing the same molecular parameters. They are de-
scribed by Lennard-Jones spheres for which cross interac-
tions have been modulated to change the miscibility between
the compounds. Then, using the NEMD results, a possible
link between equilibrium and non equilibrium properties is
discussed together with an analysis of the interfacial viscos-
ity in the frame of a local viscosity depending on the local
thermodynamic properties.

II. MODELS

A. System studied

The two-phase systems studied in this work are composed
of binary equimolar mixtures of simple spherical particles.
Interactions are described by a usual truncated Lennard-
Jones �LJ� 12–6 potential,

Uij = �4�ij���ij

rij
�12

− ��ij

rij
�6	 if rij � rc

0 if rij � rc,

 �1�

where rij is the distance between particles i and j, � is the
potential depth, � is the particle “diameter,” and rc the cutoff
radius �=3.5� in this work�.

To reduce the complexity of the systems studied, the mo-
lecular parameters of the two species have been taken equal,
i.e., �11=�22=�, �11=�22=�, and m1=m2=m, where mi is
the molecular mass of component i. Then, to modulate the
miscibility between the two species, the cross interactions*FAX: �33 5 59 40 7695; guillaume.galliero@univ-pau.fr
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between the two components have been changed by using a
classical kij prefactor,

�12 = kij� . �2�

By doing so, when kij is small enough �in our case below
�0.8� this ensures that the excess of direct attractive inter-
actions �i.e., between species 1–1 and 2–2� relatively to the
cross interactions �between unlike species 1–2� is sufficient
to overcome the tendency to mix due to entropy �19�. In the
following all quantities are provided in LJ dimensionless
units �using �, �, and m� and noted with a star as superscript.

To build the initial configuration of the simulation box,
particles from species 1 are randomly distributed between 0
and Lx /4, where Lx is the length of the simulation box along
x, and between 3Lx /4 and Lx, and particles from species 2
are placed between Lx /4 and 3Lx /4. Then, an equilibrium
molecular dynamics �with full periodic boundary conditions�
simulation is performed to reach the two-phase equilibrium
state.

When kij is small enough to induce non/weak miscibility,
this initialization ensures a biperiodical two-phase �phases I
and II� configuration along the x direction because of the
symmetry of the system studied around Lx /2, see Fig. 1. This
symmetry is due to the fact that the two phases so con-
structed are completely equivalent because of the molecular
properties of the two species �11=�22 and �11=�22. By con-
vention, we will note phase I, the phase in which species 1 is
more concentrated than species 2.

After equilibration the two planar interfaces between
phases I and II are located around Lx /4 and 3Lx /4, see Fig.
1. It is worth to mention that the dimensions of the system
have been chosen so that the distance between the two inter-
faces is larger than two times the cut-off radius. This ensures
that no interactions occur between the two interfaces.

B. NEMD scheme

To shear the two-phase system so constructed, we have
employed a NEMD scheme derived from the one proposed
by F. Müller-Plathe �20�, which was developed to compute
shear viscosity efficiently. First, the simulation box is divided
into Ns slabs �40 in this work� along the x direction. Then,
the fluid is sheared, see Fig. 1, using a net exchange of the
linear momentum along the direction z, �pz, which is per-
formed between the central part of the simulation box, Ns /2
and Ns /2+1 �center of phase II�, and the edge layers, slab 1
and Ns �center of phase I�. To do so, we simply add �pz /2 to
the particles located in slabs 1 and Ns and we withdraw the

same amount of momentum to the particles located in slabs
Ns /2 and Ns /2+1 at each time step. At the stationary state,
this NEMD scheme induces a biperiodical velocity profile in
the simulation box.

To avoid shear thinning, we have tested various values of
�pz. It has been found that a good signal to noise ratio in the
linear response regime, can be obtained by using a value of
�pz

� corresponding to an imposed shear stress �transverse
linear momentum flux� �xz,imp

� =0.05. This shear stress value
is below the shear thinning threshold of the pure LJ fluid
�21�.

In addition, to verify that the shear stress was not affected
by the presence of the fluid-fluid interface, both the classical
Irving-Kirkwood and the method of plane microscopic for-
mulations have been used �22� to estimate the local shear
stress �xz,loc

� . As confirmed on Fig. 2, the computed local
shear stress is equal to the imposed one even across the in-
terface. However, because of the biperiodical NEMD scheme
employed, the local shear stress is different from the imposed
one in the regions where the momentum exchange is per-
formed. So, the slabs where the momentum exchange is per-
formed, as well as their first neighbors, have been discarded
for the analysis of the results. Besides, by computing the
local temperature, it has been checked that the shear stress
employed was sufficiently small to have a negligible impact
on the temperature profile.

C. Numerical details

To perform the simulations, a homemade code already
validated on one and two-phase systems has been employed
�23,24�. In all cases simulations have been performed using
2000 LJ particles of each species. The Verlet velocity algo-
rithm has been used to integrate the motion’s equation with a
reduced time step of 	t�=0.003. Full periodic boundary con-
ditions combined with a Verlet neighbors list have been ap-
plied. To maintain constant the average temperature during
the simulations, a Berendsen thermostat has been used on the
x and y components of the velocity �25�.

To estimate local quantities, the simulation box has been
divided into 200 slabs along the direction x, which is suffi-
cient to obtain results that are independent of the number of
slabs. To perform the analysis in the following, results have

FIG. 1. A 2D �x ,z� sketch of the simulation box containing the
two-phases and the fluid-fluid interfaces sheared biperiodically
�with full periodic boundary conditions�.
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FIG. 2. Local shear stress, relatively to the imposed value, over
half of the simulation box for kij =0.25 at T�=1. The fluid-fluid
interface is located approximately between x��10 and x��15.
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been averaged over the two half simulation boxes �along x�
taking advantage of the symmetry of the system studied, see
Fig. 1. Equilibrium properties have been estimated using
runs of 2
106 time steps. For non equilibrium properties,
they have been computed using runs of at least 5
106 time
steps during the stationary state. In order to estimate errors
on the computed variables, the sub-blocks average method
has been applied �26�.

III. RESULTS

A. Equilibrium properties

First, a set of equilibrium MD simulations have been per-
formed at a fixed temperature, T�=1, and a given average
density, ��=0.7547 �a liquid state for a pure LJ fluid�. To
modify the interfacial properties, we have employed different
kij ranging from 0.125 to 0.75 with a step of 0.125, the lower
the kij the lower the miscibility between the compounds. An
example of density profiles obtained after equilibration is
shown on Fig. 3. It is worth to mention that there is a no-
ticeable depleted region �zone of total density lower than in
the bulk� between the two phases as found in Refs. �4,12,17�,
see Fig. 3.

To define a degree of mixing of the two species for the
different kij used, we have computed in the bulk region an
equilibrium constant K defined as

K =
x1,II

x1,I
, �3�

where x1,I is the molar fraction of species 1 in phase I and
x1,II the molar fraction of species 1 in phase II �for the sys-
tems studied here, we have always x1,I�x1,II�. Such a defi-

nition implies that K=0 when the two species are fully im-
miscible and K=1 when the two species are fully miscible.

To quantify the amplitude of the depletion at the interface,
we have estimated a relative depletion, 	, defined by

	 =
�min

�

�bulk
� , �4�

where �min
� is the minimum value of the density profile �lo-

cated at the interface, see Fig. 3� and �bulk
� is the average

density of the bulk region.
In order to determine the interfacial tension, 
�, between

the two phases, the classical mechanic route has been em-
ployed �27�, i.e., the interfacial tension has been determined
from:


� =
1

2



0

Lx
�

�PN
� �x�� − PT

��x���dx�, �5�

where PN
� �x�� and PT

��x�� are, respectively, the normal and
tangential components �relatively to the interface� of the
pressure at the position x�.

The interfacial width, Lint, has been estimated from the
density profiles of the two compounds, �1 and �2. More pre-
cisely, we have defined Lint as the distance between the x
position where �1 becomes smaller than 99% of its bulk
value and the x position where �2 becomes bigger than 99%
of its bulk value. Such a definition of the interface width has
been chosen in order to avoid the need to choose an analyti-
cal form to describe the density profiles �27�.

As shown in Table I, in all cases studied here even with
kij =0.125, the two species are not fully immiscible, i.e., K
�0, the concentration of species 1 �and 2� is everywhere not
equal to zero. As expected, both K and 	 increases with kij.
Furthermore the mixing between the species remains gener-
ally small �i.e., K�5%� except when kij =0.75 which is a
value very close to the miscibility threshold.

Concerning the depletion at the interface, it remains rather
limited compared to the ones obtained other studies �12,17�.
This is probably due to the fact that they �12,17� employ
purely repulsive interactions between unlike pairs whereas
we employ a classical Lennard-Jones potential with attrac-
tive interactions between unlike particles, Eq. �1�. In addi-
tion, it is interesting to note that 	 depends nearly linearly on
kij, see Table I.

The interfacial tension, 
�, decreases noticeably with the
increase in kij. This is consistent with what can be expected
on simple systems �27�. In addition, it is interesting to point
out that the amplitude of 
� for the lowest values of kij is
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FIG. 3. Density �full line: ��, dotted line: �1
�, dashed line: �2

��
and velocity �circles: vz

�� profiles of the sheared two-phase system at
the stationary state for kij =0.25 at T�=1.

TABLE I. Equilibrium interfacial properties �equilibrium constant, K, relative depletion, 	, interfacial
tension, 
�, and width, Lint

� � for different values of cross interactions amplitude, kij.

kij 0.125 0.25 0.375 0.5 0.625 0.75

K �in %� 0.13�0.02 0.17�0.02 0.41�0.06 1.11�0.19 4.08�0.55 32�3.1

	 0.725�0.005 0.763�0.004 0.819�0.009 0.873�0.004 0.931�0.007 0.988�0.004


� 1.54�0.04 1.33�0.04 1.08�0.05 0.78�0.03 0.43�0.05 0.09�0.07

Lint
� 5.3�0.2 5.2�0.2 5.3�0.3 5.6�0.3 6.5�0.3 12.5�2.4
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rather important for a non polar system, see Table I; for a LJ
liquid-vapor interface at a temperature close to that of the
triple point, 
� is approximately equal to 1.1 �28�. Concern-
ing Lint

� , it remains nearly constant up to kij =0.375 and then
increases with the increase in kij, see Table I.

B. Nonequilibrium properties

In a second step, for the same conditions than in the pre-
vious section, NEMD simulations have been performed.
First, it has been verified that K, 	, Lint

� , and 
� deduced from
NEMD simulations were consistent with the values obtained
during equilibrium simulations. In all cases NEMD results
have been found to be within the error bars of those deduced
from equilibrium simulations as expected for low enough
shear stress �29� and similarly to what found when a tem-
perature gradient is applied perpendicularly to an interface
�3�.

More important is the obvious slip which appears between
the two fluid phases for sufficiently low values of kij as
clearly shown on Figs. 3 and 4. From a macroscopic point of
view, this slip can be interpreted as due to a local decrease of
the apparent viscosity in the interface, an interfacial viscosity
with a value lower than in the two phases �13,14�. In other
words, the interface introduces a resistance to the linear mo-
mentum transfer as it is the case for thermal transfer �3� as
well.

In polymer science, such a result is well known
�11,13–17� and has been studied using NEMD simulations
on model polymer �14,16,17� but less is known and under-
stood concerning the monoatomic fluids cases �12,17�. The
explanation of the reduction of the viscosity in the interface
is often related to an effect due to the modification of the
configuration and entanglement of the chains at the interface

�13,14�. In the case studied in this work the systems are
monoatomic and so such an explanation cannot hold.

To quantify the slip, we have measured the velocity jump,
�vz, induced by the presence of the interface. To do so, the
velocity profiles of the phases in the bulk regions have been
extrapolated linearly to the center of the interface as shown
for kij =0.125 on Fig. 4. Then, �vz has been estimated from
the difference between the extrapolated velocities of each
phases, see Fig. 4. Next, by considering a Navier boundary
condition �1� �at the interface� the slip coefficient/length, �,
can be deduced from the velocity jump at the interface using:

�� =
�vz

�

�xz
� . �6�

In addition, we have defined the interfacial viscosity, �int
� ,

as the apparent viscosity of the interface over the interfacial
width, Lint

� defined previously. Using that definition we can
define the interfacial viscosity as:

�int
� =

�xz
� Lint

�

�vz,int
� �7�

where �vz,int
� is the variation of the velocity over the interfa-

cial width. In addition, �vz,int
� is simply the sum of the ve-

locity jump �vz
� and the velocity difference over Lint

� without
the velocity jump, i.e.,:

�vz,int
� = �vz

� +
�xz

� Lint
�

�bulk
� , �8�

where �bulk
� is the viscosity of the bulk region computed dur-

ing the NEMD simulations for each kij. So, by combining
Eqs. �7� and �8� we can deduce that

�int
� =

�xz
� Lint

� �bulk
�

�xz
� Lint

� + �vz
��bulk

�
. �9�

All ��, �bulk
� , and �int

� values obtained for each kij are pro-
vided in Table II.

As expected, �� increases and �int
� decreases monotoni-

cally when kij decreases, i.e., when the interfacial tension
between the fluid increases. The slip length, ��, can be non
negligible as it can reach roughly 3 molecular diameters, i.e.,
�1 nm for an argon type fluid. This value is rather small
compared to what can occur at fluid-solid interface �nonwet-
ting and perfectly flat at the atomic scale�, for which �� can
exceed 30 �9�. However the slip at a fluid-solid interface is
generally reduced if the solid surface is rough �30�, whereas
at a fluid-fluid interface, the interface will be always “rough-
less,” except in the presence of impurities at the interface.

x* position

6 8 10 12 14 16 18 20

v z*

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

kij = 0.125

kij = 0.375

kij = 0.625

∆vz
*

FIG. 4. Velocity profiles across the interface at the stationary
state for various kij. Full tangent lines allow to estimate the velocity
jump, �vz

�, at the interface.

TABLE II. Nonequilibrium interfacial properties �slip length, ��, bulk viscosity, �bulk
� , and interfacial

viscosity, �int
� � for different values of cross interactions amplitude, kij.

kij 0.125 0.25 0.375 0.5 0.625 0.75

�� 2.96�0.18 2.12�0.12 1.56�0.12 1.1�0.18 0.68�0.1 0.19�0.11

�bulk
� 1.73�0.14 1.72�0.13 1.69�0.14 1.66�0.15 1.6�0.17 1.55�0.13

�int
� 0.88�0.15 1.01�0.17 1.13�0.2 1.25�0.25 1.37�0.21 1.51�0.14
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Concerning the interfacial viscosity, its amplitude can be
largely smaller than its corresponding bulk value, e.g., for
kij =0.125, �int

� is two times smaller than �bulk
� see Table II.

This result is important as it implies that the global apparent
viscosity of a two-phase system can be largely smaller than
the one deduced only from the viscosity of the two phases as
long as the width of the interface is not negligible compared
to the size of the global system. More precisely, in a two-
phase system �planar� sheared parallel to the interface, the
apparent viscosity, �app, is given by

L1 + L2

�app
=

L1

�1
+

L2

�2
, �10�

where Li and �i are, respectively, the width and the viscosity
of phase i. However, if we take into account the interfacial
region, the correct apparent viscosity, �app

int , which is smaller
than �app, would be given by

L1 + Lint + L2

�app
int =

L1

�1
+

Lint

�int
+

L2

�2
. �11�

To give an order of magnitude of the impact of this partial
slip on a multiphase flow in a nanopore, we consider an ideal
slit pore �with ideal no slip conditions at the fluid-solid in-
terfaces� filled by two phases, one fully wetting and the sec-
ond one nonwetting and nonmiscible with the first phase
which implies two planar interfaces between phases I and
phase II. For the fluids properties we consider the two-phase
system studied in this work for kij =0.125 �corresponding to
Lint

� �5 and �int
� ��bulk

� /2, see Table II� and for the pore a
width D�=30. In addition, both the width of phase 2 and the
sum of the widths of the two parts of phase 1 are chosen to
be equal to L�=10. For that configuration using Eq. �11�, we

get
�app

int

�bulk
= 3

4 .
Thus, for that peculiar system, the value of the flow-rate

taking into account the slip between the fluid phases is ap-
proximately 33% higher than the one when omitting the slip
at the fluid-fluid interfaces. For simple argonlike fluid, such a
configuration corresponds to a pore width of the order of
10−8 m, which corresponds to an absolute permeability of
the order of 0.01 mDa. It is worth to notice that, by taking
into account a slip between the nonmiscible fluid phases im-
plies that one considers that the relative permeabilities �31�
are a function of the pore size when dealing with multiphase
flow in low permeability systems.

C. Interfacial viscosity

In a first approximation to relate the interfacial viscosity
to other properties, one can assume a simple link between the
interfacial viscosity and the interfacial tension. Such a link is
intuitively understandable as long as increasing the interfa-
cial tension will necessarily disfavors the momentum transfer
from one phase to another. For the systems studied in this
work we have found that the relation,

�bulk
� − �int

�

�bulk
� = a
�, �12�

where a is a constant �=0.315 in this case�, holds for all kij
see Fig. 5. This simple relation, even if tested only for the
system studied in this work, indicates that for monoatomic
systems the interfacial viscosity is probably mainly modu-
lated by thermodynamic effects and not by kinetic ones. This
is not surprising as long as the amplitude of the LJ viscosity
in dense phases �as in this work� is only weakly due to the
kinetic contribution �21�.

Another simple picture to explain the low �int
� values com-

pared to �bulk
� ones is to assume that this effect is due to the

local thermodynamic conditions �depletion� at the interface.
To test that assumption, we have estimated the local viscosity
in each slab from the local temperature, density and compo-
sition, even if the concept of local viscosity at such scale is
largely questionable �32�. To do so, as direct simulations are
not possible in the unstable regions, i.e., in the interface, we
have employed an accurate empirical correlation �23� to es-
timate the viscosity in the bulk and the interface regions
from their thermodynamic properties �temperature, density
and composition�.

This empirical correlation has been fitted on a large MD
database �23� and is able to provide the viscosity of the LJ
pure fluid with an error below 5% compared to MD simula-
tions results whatever the fluid state �23�, with density and
temperature as inputs. In order to take into account the com-
position effect, we have combined this correlation with a
classical van der Waals one-fluid approximation. Such a
scheme is very efficient for LJ mixtures composed of species
with similar masses and sizes �33� as are the systems studied
in this work. Thus, using the local values of the temperature,
density and composition, we have deduced from this corre-
lation the bulk and interface viscosities, respectively �bulk

corr

and �int
corr.

Using that approach, the bulk viscosity estimated from the
correlation and the local thermodynamic properties is always
within 2% �i.e., within the error bars� of the value computed
directly from the NEMD local velocity field, see Tables II
and III. This result confirms the efficiency of the correlation
to estimate the viscosity of the systems studied in this work.
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FIG. 5. Behavior of the interfacial viscosity with the interfacial
tension for all kij. The squares correspond to the NEMD results and
the dotted line to Eq. �12�.
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More important is that the interface viscosity deduced
from the correlation over the interface width, �int

corr, provides
a reasonable estimation of the one deduced from the NEMD
simulations, �int. However the �int

corr value is always notice-
ably larger than the �int one, see Tables II and III. The rela-
tive differences between these two viscosities are about 31,
16, 10, 6, 4, and 3 percents for, respectively, kij =0.125, 0.25,
0.375, 0.5, 0.625, and 0.75. This clearly indicates that the
interface viscosity that we have deduced directly from
NEMD results cannot be fully quantified only by the estima-
tion of a local viscosity deduced from the local thermody-
namic conditions. This is not surprising as long as we can
suspect that non-local effects have to be taken into account
�32� as it is usually done when dealing with interfaces from
a thermodynamic point of view, such as done in the gradient
theory approach �27,28�.

IV. CONCLUSIONS

In this work, we have studied simple fully symmetric
fluid-fluid interfaces undergoing shear flow using nonequilib-
rium molecular dynamics simulations. Interestingly, it has
been noticed that, in the interface where a partial depletion
appears, the tangential velocity varies more rapidly than in
the bulk regions. This indicates that a partial slip exists be-
tween two non- �or weakly� miscible fluid phases, even if the

system is composed of simple monoatomic LJ particles. In
fact, the fluid-fluid interface acts as a resistance to the mo-
mentum transfer.

As expected, the slip and the depletion at the interface are
decreasing when the miscibility between the two species in-
creases. The slip length can reach 3 molecular diameters and
the corresponding interfacial viscosity can be two times
smaller than in the bulk. It is important to point out that such
an effect can noticeably affect the expected flow-rate when
dealing with multiphase flow in low-permeability porous me-
dium.

Using the molecular dynamics results, it has been found
that the interfacial viscosity �relatively to its bulk value� can
be linearly related to the interfacial tension for the systems
studied in this work. In addition, it has been shown that the
interfacial viscosity obtained during NEMD simulations can-
not be fully accounted for by simply estimating the local
viscosity deduced from the local temperature, density and
composition at the interface.
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